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Abstract 

We propose a framework for the development of vision systems that incorporate, along with 
the executable programs, the syntactic, semantic and strategic knowledge required to obtain 
optimal performance. In this approach, the user provides the input data, specifies the vision 
task to be performed, and then provides feedback in the form of qualitative evaluations of 
the result(s) obtained. These assessments are interpreted in a knowledge-based framework 
to automatically select algorithms and set parameters until results of the desired quality are 
obtained. In this manner the vision system is given the capacity to tune itself for optimal 
performance. A system thus trained on a small subset of the input data can then be run 
autonomously on the remaining data in a batch mode. This approach is illustrated on two real 
applications, analysis of Synthetic Aperture Radar (SAR) imagery, and detection of vehicles in 
aerial photographs. 

The support of this research by the Office of Naval Research under Grant N00014-95-1-0521 is gratefully 
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1     Introduction 

Vision systems 'used in challenging operational environments should satisfy the conflicting re- 

quirements of flexibility and convenience. Flexibility is the ability to accommodate variations 

in operating conditions. Convenience pertains to the ease of operation of the system by a user 

who is not familiar with the technical details of the algorithms employed. 

Variations in image characteristics are caused by a number of factors such as weather, 

lighting conditions and image acquisition parameters. A vision system should accommodate a 

reasonable amount of such variation, and should degrade gracefully as the image characteristics 

deviate from the ideal. Once can allow for such variations by providing alternative algorithms 

for each task, as well as tuning parameters for each algorithm. In most cases, a judicious 

choice of algorithms and parameters provides results of acceptable quality under a wide range 

of operating conditions. 

Vision systems in the real world are often utilized by users who, while competent in the 

visual analysis of images, may not be familiar with the technical details of the algorithms they 

employ. It is not reasonable to expect the user functioning in an operational situation to select 

and tune the algorithms for the task (s)he is required to perform. This function is best left 

to the designer (the vision specialist) who may not be available during the system's operation. 

It is thus obvious that a vision system that provides flexibility in the choice of algorithms and 

parameter values may not be very convenient for the user to utilize. 

In order to achieve the conflicting goals of flexibility and convenience, we propose a knowledge- 

based framework to partially or fully automate the reasoning employed by the vision specialist 

in obtaining satisfactory results from the system. The proposed framework is implemented 

using the LAMA platform [13, 20]. The original vision algorithms are semantically integrated 

into this framework. The integrated system, shown schematically in Fig. 1, can then be made 

available to the user. This type of system is capable of self-tuning, i.e. adapting to changes 

in data characteristics and performance requirements with minimal external intervention. Any 

interaction with the user is in terms of qualitative evaluations of results, and not in terms of 

algorithms and parameters. In many situations, the same processing task is performed on a 

large data set consisting of hundreds or even thousands of images. In such cases, the system 

can be interactively tuned on some representative images, and once satisfactory performance is 

achieved, can then be used with fixed settings for batch processing of the remaining images in 

the data set. 

The organization of this paper is as follows. Section 2 briefly reviews related work. Sec- 

tion 3 discusses the basic concepts of knowledge-based control. Section 4 presents the LAMA 

platform. In Sections 5 and 6, results of applying our methodology to two candidate applica- 

tions (Synthetic Aperture Radar (SAR) image analysis and vehicle detection in aerial imagery) 

are presented. These applications, developed at the University of Maryland, were selected 

firstly because they address interesting and non-trivial problems, and secondly because their 

developers were available to provide the required expertise, indispensable for constructing the 



stages of processing 

a 
■ 

■ 
■ 

tuning parameters 

knowledge^ 
base 

1 parameter values  f algorithm choices 

control module 

Results 

User feedback 

Figure 1: Architecture of a self-tuning vision system. The vision system has a number of stages 

of processing, with different possible algorithm choices at each step. Each algorithm may have 

one or more tunable parameters. The user evaluates the result(s) of processing, and the control 

module uses this feedback to change algorithms or parameters in order to improve the results. 

knowledge bases. The final section contains the conclusions resulting from our work, as well as 

a list of areas for further investigation. 

2    Previous work 

As vision algorithms and systems have grown in power and complexity during the past few 

decades, there has been a corresponding growth in software platforms tailored to vision system 

development. Traditional methods range from graphical script generators, to vision toolkits, 

to object-oriented protocols for data and program interchange. The emphasis is on abstracting 

the types of objects and computational geometries used in image understanding into useful 

programming constructs [12]. One of the objectives is to enable the rapid design of algorithms 

using a tool-box of pre-existing constructs, and prototyping of longer processing chains by 

linking simpler elements together. The user is often provided with a visual programming en- 

vironment (VPE), which enables him or her to mix-and-match between the available methods. 

For the most part, these systems offer only syntactic integration of vision programs. They pro- 

vide a means to integrate code and usage syntaxes, but do not provide a means to incorporate 
further knowledge about the programs. 

Knowledge-based techniques can be used in various ways in the development of vision sys- 



terns. For an excellent survey of this topic, see [6]. Knowledge-based systems, also known as 

expert systems, have been traditionally used for the high-level interpretation of images, and 

for specific vision tasks such as segmentation (e.g. [14]). They incorporate mechanisms for 

the spatial and temporal reasoning that is characteristic of intermediate- and high-level image 

understanding. These knowledge-based systems are tailored towards specific tasks, and are 

usually not generalizable to other tasks. 

The work presented in this paper is different from the above two approaches (syntactic 

integration systems and expert systems for specific vision tasks) in the sense that it proposes 

a general-purpose framework for knowledge-based control of vision systems. The approach can 

be used to develop knowledge-based semi-autonomous systems for any vision application. This 

is a continuation of the work reported in [5, 17]. 

Some of the early work with a similar motivation is reported in [8, 18, 11]. More recently, 

this problem has been addressed in the context of the VIDIMUS project [1], with the aim of de- 

veloping an intelligent vision environment for industrial inspection. A knowledge-based system 

(VDSE) was built within this environment, which can automatically configure a vision system 

for a given inspection problem. The automatic generation of an image processing script based 

on a user request and a knowledge-based model of an application domain is addressed in [4]. 

In [7] vision algorithm control is modeled as a Markov decision problem. This model is used to 

automatically assemble object recognition programs from existing vision algorithms. In [15, 16] 

a context-based vision paradigm is proposed, where the basic aim is to use contextual informa- 

tion to select methods and parameters in a vision application. The authors emphasize the need 

for explicitly encoding semantic knowledge about vision algorithms such as assumptions about 

their use and their inherent limitations. The use of contextual information derived from site 

models to construct control patches for the self-tuning of vision algorithms is discussed in [2]. 

3    Knowledge-based control 

In a typical vision application, a number of stages of processing are involved in going from the 

raw input data to the final result, as shown in Fig. 1. Typically, at each stage of processing 

a number of alternative algorithms can be employed. Each of these algorithms, in turn, may 

have one or more tunable parameters. These parameters may be continuously variable, or may 

take discrete sets of values. Often, due to uncertainty in the data and in the problem model, 

it is not possible to predict beforehand if a given algorithm sequence will produce the desired 

result for a certain parameter setting. It may be necessary to start with a rough guess as to 

the parameters, execute the algorithm sequence, examine the results, and if necessary, modify 

the parameter values or the selection of algorithms, and repeat the procedure until results of 

the desired quality are obtained. 

In this section, we examine the types of knowledge used by a vision specialist (and therefore 

required for knowledge-based control), and the implications for the design of self-tuning vision 

systems. 



3.1     Smart modules 

From a problem-solving perspective, the task of solving a vision problem using a given set 

of algorithms involves three types of knowledge: syntax, semantics and strategy. Syntactic 

knowledge is information about input and output data types and formats, input parameters, 

command-line arguments, etc. Information such as memory required may also be considered 

as syntactic knowledge. Semantic knowledge is the vision specialist's expertise about the char- 

acteristics of the algorithms, result evaluation, assembly of algorithms for a given task, etc. 

Strategic knowledge pertains to the high-level decisions that should be made about result eval- 

uation (by the system, by the user, or not at all) and failure handling (repair failure at the 

current module or at another place in the chain of processing, repair failure by parameter tuning 

or by algorithm reselection, etc.). 

The objective of knowledge-based control is to provide a suitable framework for "packaging" 

algorithms using the three types of knowledge described above. Conceptually, as shown in 

Fig. 2, raw programs are wrapped with layers of syntactic, semantic and strategic knowledge 

to form "smart" modules. This is done in a recursive fashion for more complex tasks—smart 

modules can be connected sequentially (Fig. 3), in parallel (Fig. 4), or selectively (Fig. 5), and 
the ensemble is then re-wrapped. 

strategic wrapper 
semantic wrapper 

syntactic wrapper 

"raw" program or "smart" module hierarchy 

V o specifications (data, parameters, formats) 

command-line syntax 

characteristics            sub-module selectic 

parameter tuning           result evaluation 

n 

failure handling strategy (local or nonlocal) 
operating mode (specialist or user) 

interactive or autonomous functioning 

Figure 2: Packaging a vision algorithm into a "smart" module. A "raw" executable program 

is not useful to anyone except the speciahst who designed and implemented it. In order for 

another person, particularly a non-specialist, to use the program, it must be accompanied by 

some knowledge about how to run it, how to evaluate its results, how to tune it, etc. Smart 

modules can themselves be connected in various ways and re-packaged for more complex tasks. 
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Figure 3: A module with a sequential decomposition into sub-tasks.  Execution of Module 1 

implies sequential execution of Modules 1.1 through l.n. 
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Figure 4: A module with a parallel decomposition into sub-tasks. Execution of Module 1 implies 

execution in parallel of Modules 1.1 through l.n. 
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Figure 5:  A module with different possible realizations.   Execution of Module 1 implies the 
execution of one of Modules 1.1 through l.n. 

3.2     Self-tuning 

Self-tuning is the ability of the vision system to select the appropriate algorithms and parameter 

values based on the input data, contextual information, and feedback from the user in the form 

of result evaluations. In most cases, the selection of algorithms may be performed, before any 

data processing has taken place, based on the contextual information alone [15]. Parameter 

tuning, on the other hand, is dependent on the characteristics of the specific data set. It has to 

be interleaved with the processing of the data, based on the operator's evaluation of the results. 

Consider a vision system A composed of m stages, with n,- parameters in the ith stage: 

A = AlA2...Ai...Am 

where each A, is of the form 

Ai = Ai(pi1,Pi2,...,Pini) 

As shown in Fig. 6 the entire vision system can be regarded as consisting of a single algorithm 

A(PI,P2,---,PN)- The N parameters that tune this "black box" algorithm are the YT=ini 

parameters of the m individual stages. We refer to a specific setting of these JV parameters 

as an operating point (OP). We define an acceptable operating point as a parameter setting 

that yields satisfactory performance for the given data set. Our basic assumption is that there 

exists at least one acceptable operating point (or, in the case of continuous-valued parameters, 

operating region). In general, the default parameter setting will not be an acceptable one. The 
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Figure 6: A simplified black-box model of a vision system consisting of stages Ax-Am. The 

parameters of the individual modules become the parameters of the black box. 

objective, then, is to be able to find an acceptable OP for the given data set in an efficient 

manner. If each parameter pi has k{ possible values, the total number of parameter settings 

is Yliki. An exhaustive search of the JV-dimensional parameter space may therefore be too 

computationally expensive. Further, it is bound to be extremely tiresome for the user who has 

to evaluate the results at each step and provide feedback. This is where a knowledge-based 

approach is applicable. A vision specialist employs a problem-solving strategy consisting of 

heuristics, rules of thumb, etc., which effectively help him or her find a short cut ("tuning 

path") to an acceptable operating point, as shown in Fig. 7, without having to explore the 

entire parameter space. The strategy employed by the specialist has to be integrated into the 

vision system to give it a self-tuning capability. 

' parameter space" 

acceptable-operating region 

0 
1 tuning path 

default setting _/ 

Figure 7: Parameter tuning viewed as a search for an acceptable operating point in the pa- 

rameter space. A parameter setting chosen from the acceptable operating region results in 

satisfactory performance of the vision system. One of the basic goals of vision algorithm con- 

trol is to reach an operating point within this region. 
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3.3    Modes of operation 

Any vision task A can be hierarchically decomposed into a set of subtasks Ai-Am, each of 

which (say A;) may be decomposed further into subtasks Aix-Aimi and so on. For instance, a 

typical vision system may consist of a top-level module A, consisting of sub-modules Ax and 

A2, and these may be composed of elementary subtasks An, A12, A2X, and A22. In our model, 

attached to each (sub)task A... at any level in the hierarchy is a strategy T.. which contains 

all the specialist's knowledge about the module: how/when it should be used, how to evaluate 

its performance, and how to adjust it if improved performance is required. Depending on the 

strategies available, this type of a system can function in one of two modes: the specialist mode 
or the user mode. 

In the specialist mode, shown in Fig. 8, all the strategies at every level of the hierarchy are 

available. In other words, results at every stage, including the intermediate ones, are available 

for evaluation by the specialist. This is applicable to the test phase when the specialist is 

in the process of testing the functioning of the system. In the user mode, shown in Fig. 9, 

only the top-level strategy T is directly available and only the results of the final stage are 

available for evaluation by the user. This mode is designed for the operational phase. From a 

control-theoretic viewpoint, a self-tuning vision system can be regarded as a closed-loop system 

where the observer is the user, who provides feedback in the form of result evaluations. This 

feedback can be either at the highest level (corresponding to the user mode), or at all levels 
(corresponding to the specialist mode). 

input 
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Figure 8: Specialist tuning mode for a three-level vision system. The results of the modules A, 

Ai, A2 and An-A22 and the corresponding strategies T, Tu T2 and Tu-T22 are available. 

In the specialist mode, the availability of intermediate results enables linear planning for 

the fine-grain local optimization of algorithms. The user mode, however, necessitates the use of 
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Figure 9: User tuning mode for a three-level vision system. Only the results of the top-level 

module A and the corresponding strategy T are directly available. The strategies Ti, T2 and 

T11-T22 are available only indirectly through message transmission. 

more complex reasoning, since only the final result is available, based on which any algorithm 

at any stage of the processing may have to be retuned. 

3.4     Result evaluation 

In the user mode, the vision system is tuned based on the evaluation of results by the user. We 

can define two types of result evaluation: general and specific. General evaluation consists of 

qualitative global judgments about algorithms and results ("too many false alarms", "too many 

missed detections at road intersections", etc.). Specific evaluation, on the other hand, pertains 

to particular objects or regions in the result ("this airplane is a false alarm", "this portion of the 

image contains too many false alarms", etc.). It can be qualitative or quantitative in nature. 

An example of each type of evaluation is shown in Fig. 10. 

Both types of evaluation have their advantages and drawbacks. Specific evaluations are 

simple, intuitive, and precise. The user is not expected to make any detailed analysis of the 

results. Further, for certain applications such as target detection, specific evaluations provide 

a very rich form of feedback to the control engine. However, they are difficult to deal with in a 

general-purpose framework, since they require mechanisms for reasoning and for user interaction 

that are application-dependent. This makes separation of the application from the knowledge 

base more difficult. General evaluations are of a more complex nature than specific evaluations, 

since they require more detailed feedback from the user on the types of errors present in the 

output. However, they are more suitable for a general-purpose framework, since they do not 

require any special interaction or reasoning mechanisms, and are relevant to all types of vision 
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darker vehicles missed 
dark portions of vehicles ignored 
false alarms near lane markings 
longitudinally close vehicles merged 

GENERAL EVALUATION 

wrong 
size alarms 

Issed 
detections 

SPECIFIC EVALUATION 

Figure 10: Example of the two types of result evaluation. The application here is the detection 

of vehicles in an aerial image. The user can provide feedback either in the form of general 

remarks about the overall result, or in more specific terms. 

problems. In this paper, we deal primarily with general evaluations. 

4    The LAMA platform 

LAMA is a methodology as well as a general-purpose platform for developing intelligent appli- 

cations, consisting of a kernel library, a knowledge base description language called YAKL (Yet 

Another Knowledge-base Language), verification and validation (V & V) facilities, a graphical 

user interface and other tools, as shown in Figure 11. A complete description of LAMA is 

beyond the scope of this paper; the interested reader is referred to [20]. For our purposes, 

LAMA may be viewed as an architecture based on frames and rules for encapsulating the 

problem-solving knowledge of the vision specialist. 

A vision application developed using LAMA consists of a set of pre-existing algorithms 

(also referred to as programs, modules or methods), a knowledge base (KB) on using these 

algorithms, and a control (supervision) engine. A vision functionality is the abstract represen- 

tation of a vision task. It is realized in a concrete form by one or more operators corresponding 

to it. An operator may be either simple, corresponding to an executable program, or composite, 

represented by a predefined skeletal plan. A skeletal plan describes a network of connections 

between operators (choice, sequence, repetition, etc.) for realizing a given functionality. The 

description of an operator contains information about its arguments (name, type, range, default 

11 



LAMA 

Figure 11: The LAMA platform 

values, etc. of the input data, output data and parameters), semantic information about its 

applicability (in the form of pre- and post-conditions), as well as criteria for parameter initial- 

ization, result evaluation, etc. For operators corresponding to real executable programs the 

calling syntax is also provided. The structure of operators is shown in Fig. 12. 

The functioning of the control engine (Fig. 13) can be decomposed into a number of phases: 

planning and execution of programs, evaluation of the results, and repair, as shown in Fig. 13. 

The planning step first builds a plan, or part of a plan, which is then executed. The results of 

execution are then assessed in the evaluation step. If the assessments are positive, the planning 

process continues. If failures are detected, the repair step invokes the appropriate remedial 

measures which may either result in re-execution or re-planning of any part of the hierarchy. 

The planning, evaluation and repair steps are discussed in greater detail in the following sections. 

4.1    Planning 

The basic planning mechanism used is hierarchical script-based planning. A plan is a set of 

steps to attain the desired vision objective. It is similar to the block schematics often used in 

the design of signal processing algorithms, but is different in two ways: 

(a) Plan hierarchy: each "box" in the plan can be a complex vision task, with its own plan, 

(b) Plan abstraction: the components of the plan represent abstract vision tasks, and not specific 

algorithms or programs. During execution, choice rules are used for selection of the operator 

best suited for the task at hand. They are of the form: 

if 

the data have property x 

AND context field f has value y 

AND the request has a constraint z 

then 

choose an operator with characteristic b 
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Operator 
Functionality 
Characteristics 
Input data 
Tunable parameters 
Output data 
Preconditions 
Postconditions 

Terminal Operator 
Functionality 
.... 1   common part 

Postconditions 

Calling syntax   \  specific part 

Rule 
bases 

parameter initialization rules 
parameter adjustment rules 
result evaluation rules 
repair rules 

Complex Operator 

Functionality 

Postconditions 
common part 

Decomposition into suboperators 
(sequential, parallel, alternative)     > 
Data flow specific part 

parameter initialization rules 
choice rules 
result evaluation rules 
repair rules 

Figure 12: Structure of operators in LAMA. There are two types of operators, simple and com- 

plex. Simple operators are "packaged" forms of executable programs, while complex operators 
have an associated decomposition. 
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Figure 13: Control strategy 
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AND do not choose operator w 

(The above example shows only some of the possible types of premises and actions in a choice 

rule. Many other types of premises and actions are possible, for choice rules as well as for the 

three other kinds of rules described later.) 

Once an operator is selected, it is initialized using initialization rules, of the form: 

if 

the data have property x 

AND context field f has value y 

then 

set parameter p to value f(y) 

4.2 Evaluation 

The performance of an operator is analyzed using evaluation rules, which are of the form: 

if 

the output does not satisfy criterion c 

then 

judge plan entity to have some quality 

declare failure 

The "plan entity" could be the current operator, a result of processing, or in general, any 

plan element in the hierarchy. Many other types of evaluation are possible, using information 

about the previous evaluation, about the number of times the operator has been (unsuccessfully) 

executed, about whether the result is better or worse than before, etc. 

4.3 Repair 

Failure handling in LAMA is performed either locally inside the operator, or nonlocally by 

message transmission to another part of the plan. 

Local failures are handled by parameter tuning using repair aiLdadjustment rules. A repair 

rule for local failure-handling is usually very simple, of the form: 

if 

true 

then 

re-execute 
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When this rule is applied, the operator is re-executed, invoking one or more adjustment 
rules of the form: 

if 

result r has quality q 

then 

adjust parameter p using method m 

When the failure of the current operator is caused by the (undetected) failure of another, 

the repair strategy employs message transmission from the current operator to the offending 

one. The repair rule in this case is of the form: 

if 

result r has quality q 

then 

send message m to operator o 

The control then switches to operator o, whose failure-handling strategy is then activated, 

based on the message m that has been sent to it. 

4.4    Integrating an application into LAMA 

Vision applications typically consist of a number of executable programs with associated syn- 

tactic, semantic and strategic knowledge, as described in Section 3.1. The mechanisms for 

planning, evaluation and repair provided by LAMA enable us to package a given vision system 

into an ensemble of smart modules, enabling the user to obtain optimal performance with min- 

imal intervention. A knowledge representation language, YAKL, is employed for this purpose. 

Mechanisms are provided to test the consistency of the knowledge base thus created [20]. A 

number of different control engines are available for running the integrated application. In our 

work, we use the PEGASE engine [21] which provides hierarchical and skeletal-based planning 

interleaved with control of execution. A GUI is provided for examining the knowledge base as 

well as for monitoring the application during execution. 

The following two subsections describe how to build a LAMA/PEGASE knowledge base 

(KB) for an application, and how to run the integrated application. 

Building a knowledge base 

The first step is the construction of a set of skeletal plans for the application. A plan consists 

of an operator hierarchy, where the top-level operator solves a given vision task. The task 

performed by this operator is then recursively decomposed into sub-tasks, each with an associ- 

ated complex or simple operator, until the lowest levels of the operator hierarchy contain only 
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simple operators. Complex operators have an operator decomposition associated with them, 

whereas simple operators specify the calling syntax of the associated program. A goal instance 

is created corresponding to the top-level operator functionality. 

The next step is the creation of the rules which express the strategy of the specialist in 

executing a plan. The LAMA architecture enables the systematic expression of the "rules of 

thumb" and "approximate reasoning" which are crucial to successful problem-solving. This is 

done by means of the five types of rules discussed earlier. A mixture of numeric and symbolic 

reasoning may be needed for all four types of rules. Choice rules, being the simplest, are 

defined first. They use the values of context fields, data definitions, constraints in the request, 

etc. to select an operator from among the choices available. Initialization rules are defined 

next. These may be somewhat more difficult, in that they have to formalize the "rough initial 

guesses" that the specialist makes before starting an vision task. Adjustment rules are then 

defined for operators which have adjustable parameters. Step sizes for parameters have to be 

carefully chosen so that the change in the behavior of the algorithm is neither too sudden nor 

too gradual. Then evaluation rules are defined. This is a rather difficult task, since the question 

"Are the results good enough?" is often subjective, and appropriate quality measures may not 

be readily available. However, a close examination of the specialist's strategy often reveals 

hidden reasoning capable of being expressed in concrete terms as evaluation rules. Finally, the 

repair rules are defined. These rules determine the overall failure-handling strategy, and are 

crucial to the success of the application. 

Running an application in LAMA/PEGASE 

The solving of a problem starts with the creation of a request, which states the functionality, 

the data on which this is to be achieved, and the context in which the problem is being solved. 

Using choice rules, the available operators for the functionality are rank-ordered. The best 

operator is selected, and executed on the given data after the operator's initialization rules 

have been applied. If the operator is a simple one, this corresponds to the execution of the 

corresponding program. If it is a composite one, requests for its sub-tasks are created, and 

a tree of requests is created. Requests are chosen from this tree and executed depending on 

their sequencing. If the mode of execution control calls for it, the results of executing a request 

are judged using evaluation rules, and in the event of a failure, either the same operator is 

re-executed after its parameters have been adjusted using the relevant rules, or the next best 

operator is applied. In the event of successful execution, the next request in the tree is selected 

for execution. This continues, and the execution terminates when the tree of requests is empty. 

The next two sections illustrate our approach using two real applications. The first ap- 

plication, Synthetic Aperture Radar (SAR) image analysis, illustrates the specialist mode of 

self-tuning, while the second application, vehicle detection, illustrates the user mode. 

16 



5    Example: SAR Image Analysis 

This application is based on the work of Kuttikkad and Chellappa [9]. Its goal is to analyze 

a SAR image to identify semantic objects such as targets, buildings, roads, and trees, and to 

segment the remaining parts of the image into various categories such as grass, water and bare 

ground. The first step is the detection of regions of high backscatter using a Constant False 

Alarm Rate (CFAR) technique [9]. In the next step non-target pixels in the image are classified 

as grass, tree, bare ground, road or shadow using a Maximum Likelihood (ML) approach. 

Training data obtained from other images of similar scenes is employed. This is a preliminary 

classification, using no high-level information whatsoever. A large percentage of the pixels are 
likely to be misclassified. 

Shadow regions are detected and then eroded and grown using morphological operations. 

The same is done for pixels classified as road. Very small regions of either class are eliminated, 

and the rest are grouped into homogeneous regions. Shadow regions that are adjacent to a bright 

streak (in the CFAR output) towards the sensor are classified as building shadows. Roads are 

verified using a shape/size criterion. ML segmentation is then repeated for pixels previously 

misclassified as road and shadow, this time classifying them as grass, bare ground or trees. Tree 

regions are grown using morphological operations, and verified using a size argument, as well 

as by the presence of adjoining shadow regions away from the sensor. In the CFAR output, 

streaks corresponding to buildings are eliminated, and the remaining target pixels are grouped 

into clusters. In the final step, ML segmentation is repeated, and based on the previous steps, 

pixels misclassified as shadow, road or tree are re-classified into grass or bare ground. 

Examples of results obtained by the approach are shown in Fig. 14. 

Knowledge base 

The hierarchy of operators for this application is shown in Fig. 15. The knowledge base consists 

of the following major components: 21 operators (13 simple and 7 complex), 18 sequential and 

2 choice links, and a total of 29 production rules (2 choice, 10 initialization, 6 evaluation, 6 

adjustment and 5 repair). The complete knowledge base will not be described in detail in this 

paper. Instead, some simple examples from the KB are presented to give the reader a feel for 

the kinds of objects and reasoning involved in a real application. 

An example of a complex operator is shown in Fig. 16. The functionality is road verification, 

which verifies road hypotheses obtained by pixel classification and region growing. This operator 

has a decomposition into a choice between two simple operators, one of which is shown in Fig. 17. 

The choice rules for deciding which operator to select are shown in Fig. 18. The reasoning is 

as follows: in rural areas, roads are likely to have longer unbroken stretches, whereas roads in 

urban areas have many intersections. Hence an operator for verifying road hypotheses in rural 
areas should use length as a criterion. 

The rules for initializing the parameter "PEA" (probability of false alarm) for the operator 

"o-cfar" are shown in Fig. 19. This operator is used to detect targets in a SAR image.  The 
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Figure 14: Examples of results of SAR image analysis. 
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Figure 15: Operator hierarchy for SAR image analysis. 
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Complex Operator { 
name : verify-roads 

comment : "verify road hypotheses obtained from the previous steps' 

Functionality : road-verification 

Input Data 
PGH-Image name : road-region-image 

comment : "Binary PGM image file with black road areas" 

Output Data 
PGM-Image name : road-image 

comment : "Output PGM image file for storing detected shadows" 

Preconditions 
valid road-region-image 

Postconditions 
valid road-image 

Body 

verify-road-1 OR verify-road-2 ; 

Choice criteria 

Data Flow 

verify-roads.road-region-image/verify-road-1.road-region-image 
verify-roads.road-region-image/verify-road-2.road-region-image 
verify-roads.road-image/verify-road-2.road-image 
verify-roads.road-image/verify-road-1.road-image 
> 

Figure 16: Example of a complex operator 
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Terminal Operator { name : verify-road-1 
comment : "Extended fill" 

Functionality : road-verification 

Input Data 
PGM-Image name : road-region-image 

comment : "Binary PGM image file with black road areas" 

Input Parameters 
Float name : aspect 

comment : "Aspect ratio threshold for road segments" 
default : 2. 

Float name : fill-ratio 
comment : "Fraction fill of bounding rectangle for valid road" 
default : .6 

Integer name : min-road-length 
comment : "min road length in pixels" 
default : 25 

Output Data 
PGM-Image name : road-image 

comment : "Output PGM image file for storing detected shadows" 
1-0 relations : 
road-image.path := road-region-image.path, 
road-image.basename := road-region-image.basename, 
road-image.extension := ".roads" 

Preconditions 
valid road-region-image 

Postconditions 
valid road-image 

Call 
language : shell 
syntax : rdtwo road-region-image.get-filename road-image.get-filename 

-a aspect -r fill-ratio -1 min-road-length 
program name : rdtwo 

} 

Figure 17: Example of a simple operator 
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Rule 
name : ch-verify-road-1 
comment : "Roads in rural areas have longer unbroken stretches, 

since there are fewer intersections" 
if 

then 
context.scene-type == rural 

use-operator-of-characteristic length-based 

Rule 
name : ch-verify-road-2 

if 

then 
context.scene-type == urban 

use-operator-of-characteristic support-based 

Figure 18: Examples of choice rules 

Rule 
name : init-PFA-1 
comment : "Initialize PFA heuristically" 

if 
context.noise == 'low 

then 
PFA :=.001 

Rule 
name : init-PFA2 
comment : "Initialize PFA heuristically" 

if 

context.noise == 'high 
then 

PFA := .0001 

Figure 19: Examples of initialization rules 

parameter PFA is a threshold which determines the number of bright pixels that are classified 

as target pixels. The higher the PFA, the more likely it is that a given pixel is classified as a 

target pixel. The rules for evaluating this operator are shown in Fig. 20. The user is asked 

to judge if the results of target detection are satisfactory. If not, appropriate action is taken 

via adjustment rules, such as shown in Fig. 21. An example of the entire chain of reasoning is 
shown in Fig. 22. 

6    Example: Vehicle detection 

The methodology discussed in Section 4 has also been applied to the detection of vehicles in 

aerial imagery. We have used a simplified version of the Vehicle Detector developed at the Uni- 

versity of Maryland [3], which detects and approximately localizes vehicles of a specified size and 
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Rule 
name : ev-target 
comment : "Ask the operator to judge if 

the number of target pixels looks ok" 
if 

then 
true 

assess-data-by-user cfar-image 
(num-target-pixels-correct num-target-pixels-too-low 

num-target-pixels-too-high) 

Rule 
name : ev-target2 
if 

then 
not assess-data? cfar-image num-target-pixels-correct 

assess-operator failed repair 

Figure 20: Examples of evaluation rules 

Rule 
name : adj-PFA-1 
comment : "If # target pixels is too low, increase PFA' 

if 
assess-operator? detect detect-PFA-too-low 

then 
adjustment-method PFA percent-float, 
adjustment-step PFA 400, 
increase PFA 

Rule 
name : adj-PFA-2 
comment : "If # target pixels is too high, reduce PFA" 

assess-operator? detect detect-PFA-too-high 
if 

then 
adjustment-method PFA percent-float, 
adjustment-step PFA 80, 
increase PFA 

Figure 21: Examples of adjustment rules 
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rule init-PFA-1 is applied 

i 
operator o-target 

with parameter 
PFA = 0.001 

rule eval-target is applied 
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user dialog 
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too-high cancel 
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rule adj-PFA-1 is applied 
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with parameter 
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Figure 22: Example of the reasoning used by the control engine. The initial choice of the 

parameter PFA is 0.001. The operator is executed, and the user examines the result and judges 

the number of target pixels to be too low. The parameter is then adjusted to 0.005, and the 
operator is re-executed. 
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orientation. Our objective here is to demonstrate the application of the approach presented in 

this paper to a simple existing vision application. We do not attempt to improve on the underly- 

ing application itself in any way. The main stages of processing, shown in Fig. 23, are as follows. 

preprocessing hypothesis 
generation 

edge image 

C"-^ if  

hypothesis 
validation 

Figure 23: A simplified version of the UMD vehicle detector. The input is an aerial image. 

Contours are extracted, and vehicle hypotheses are generated. These hypotheses are then 

validated to obtain the final result. 

Preprocessing: Edge pixels are extracted using the Canny edge detector. Both gradient magni- 

tude and gradient direction are computed. 

Hypothesis generation: A modified generalized Hough transform (GHT) is used to locate areas 

corresponding to centers of candidate vehicles. Edge pixels vote for all possible centers of ve- 

hicle contours which contain the pixel. The votes are collected in an accumulator array, and 

thresholded. The result is a set of hypothesized vehicle centers. Local "rubber-band" con- 

tour matching is subsequently applied to reject candidate vehicles which do not have sufficient 

support boundaries on both sides of the vehicle. 

Hypothesis verification: This stage resolves spatial conflicts (overlaps) between vehicle hypothe- 

ses. This is done in three steps. In the first step, the conflict resolution is done purely on the 

basis of the distances between the centers of candidate vehicles. If two candidate vehicles are 

closer than a certain fraction of their width, the one with the greater boundary support is 

retained. The second step uses the size of the overlap area between two conflicting vehicles as 

a criterion for rejecting the weaker vehicle. In the final step, the longitudinal distance between 

adjacent vehicles lying on the same axis is used as a filtering criterion. 

25 



6.1    Knowledge base 

The operator hierarchy for the vehicle detector is shown in Fig. 24. The knowledge base is under 

development. Currently, it consists of 13 operators (4 complex and 9 terminal), 10 sequential 

operator links, two choice links, and a total of 37 rules (2 choice, 1 initialization, 11 assessment, 

8 adjustment and 15 repair). As the knowledge base for this application is developed further, 

the number of operators is expected to increase only slightly, whereas the number of rules is 

expected to increase considerably. 

vehicle detection 

preprocessing 

smoothing edge 
detection 

hypotl 
generation 

hypothesis 
verification 

generalized rubber-band spacing   overlap    position   texture 
Hough transform    template matching     check      check       check      check 

Figure 24: Operator hierarchy for the UMD vehicle detector. 

6.1.1    Evaluation and repair strategies 

As in any target detection application, there are two principal types of errors: missed detections 

(MDs) and false alarms (FAs). The general objective is to reduce both types of errors as much 

as possible. In practice, some tradeoff is made between the MD rate and the FA rate. Currently, 

the user is asked to choose between the responses MD (too many missed detections), FA (too 

many false alarms) and OK (results are satisfactory). If errors of both kinds are simultaneously 

present, as is usually the case, the user selects the error which is more significant. If the 

response is not OK, the user is further queried about the type of MD or FA, as shown in 

Fig. 25. Currently, MDs due to the following three situations are recognized: vehicles too large 

or too small, vehicles have low contrast, vehicles too tightly packed. Four types of FAs are 

handled: multiple hits from the same vehicle, false positives at control lines (the lines used to 

demarcate the different parking spots), puddles/oil stains mistaken for vehicles, and FAs due 

to pavement texture. Extensive testing on a diverse set of aerial images will enable us to create 

a richer taxonomy of errors. 
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evaluation 

poor        insufficient    too small/ 
contrast       spacing       too large 

pavement 
texture 

puddles and 
oil stains 

control 
lines 

multiple 
hits 

Figure 25:  User evaluation of the UMD vehicle detector.   The user looks at the result, and 

judges if there are missed detections (MDs) or false alarms (FAs), and if so, of what type. 

The repair mechanism has a nested structure, and is interleaved with the evaluation mech- 

anism. For every allowed error subtype there are one or more repair strategies. The repair 

strategies are tried one after the other until either the error disappears or the strategies are 

exhausted. An example is shown in Figure 26. The first run of the system produces the result 

shown in the first box in the second row. Evaluation rules are fired, asking the user to judge 

this result. The user indicates that there seem to be false alarms, possibly due to control lines 

on the parking area. This triggers repair rules, which successively transmit this judgment to 

the operator "verify-hypotheses" and then to "check-texture", which is responsible for filtering 

out such false detections. An adjustment rule in "check-texture" is then applied, adjusting 

a parameter "contrast-threshold" from 5 to 15. This parameter is the minimum allowable 

difference in mean grey level between a candidate vehicle and its background. Raising this 

threshold eliminates the false alarms caused by the control lines, producing the result shown in 

the first box of the third row. The user evaluates this result again, judging it to have too many 

missed detections, possibly due to the vehicles being too close together. This judgment triggers 

a sequence of repair and adjustment rules, resulting in the decrement of a parameter which 

specifies the factor by which vehicles have to be scaled before deciding that they overlap. This 

allows candidate vehicles spaced closer together to be judged as non-overlapping, and hence 

acceptable. The final result, which the user judges to be "OK", is shown in the first box on the 

last row. 
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7    Conclusions and future work 

This paper has presented a methodology for adding flexibility and convenience to an existing 

vision system by integrating the vision specialist's knowledge into it using a knowledge-based 

architecture. The proposed methodology assumes that the vision system has a non-empty 

operating region at which it yields satisfactory results. It imitates the strategy of the specialist 

in reaching a point in this region from a given or default setting. The system can thus self-tune 

in response to the user's evaluations. This type of system will be of immense value in making 

the full power of vision algorithms available to end-users. 

Our future work will focus on the following areas: 

Detecting failure: Obviously, if no combination of the tuning parameters can yield sat- 

isfactory results, neither the specialist nor the self-tuning framework will have any chance of 

succeeding. On the other hand, if the self-tuning strategy does not capture the full complexity 

of the specialist's reasoning, it may fail in difficult cases even if a solution exists. Detecting this 

failure may not always be easy for the user, since the self-tuning strategy may have loops and 

other complex chains of reasoning. If the system does not solve the problem in a reasonable 

amount of time, it should be considered as having failed. Experimentation on large and diverse 

data sets and constant refinement of the knowledge base will ensure that such failures do not 

occur too often. 

Validity of the model: Closely related to the problem of detecting failures is the validation 

of the basic self-tuning model itself. This model assumes that based on certain "symptoms" 

of the result, a diagnosis can be made as to which parameter (or algorithm) is at fault. As 

in [7], the vision system is assumed to possess a "Markovian" property, which allows order- 

independent and mutually independent parameter tuning. The problem of parameter tuning 

is essentially ill-posed: there may be many more parameters than symptoms, and a one-to-one 

mapping may not be easy to establish in all cases. A more complex problem-solving model that 

takes this into account needs to be investigated. 

Specific evaluations: Currently, result evaluations are in the form of general remarks about 

the results obtained, and not about specific portions or objects of the output. Our future work 

will incorporate some mechanisms for handling specific evaluations. The challenge is in making 

these mechanisms as application-independent as possible. 

Quantitative performance measures: There has been some recent work on statistical 

performance characterization of vision algorithms (e.g. [10]). Integrating this kind of tool into 

a self-tuning vision architecture, although a challenging task, is a promising area of research, 

because it would add a quantitative dimension to the result evaluation process. 
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Learning: Machine learning principles can be applied to exploit the wealth of information 

accumulated over a period of time as the vision system is tested on different data sets [19]. 

The current implementation of the LAMA platform does not make the operational history 

of the self-tuning process directly available to the system developer. The availability of this 

information will enhance machine learning capabilities, and will also be useful in performance 
analysis. 

Other applications: The vehicle detection application will be upgraded to use a version 

capable of detecting vehicles of all sizes and orientations. We propose to test the methodology 

on other candidate problems such as multisensor registration, and to validate it using large and 
diverse data sets. 
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